Prof. Dr. Teo Lee Peng



Teo Lee Peng

Current Position


Administrative Position


Room No.



Mathematics and Applied Mathematics


+603-8800 6836




Professor Teo obtained her PhD from Stony Brook University in the United States. She joined Xiamen University Malaysia in 2016. Her researchis mostly on mathematical physics, especially those related toanalytic theory of Riemann surfaces. Currently her research is focused more on analytic number theory.


Mathematical Physics, Analytic Number Theory


  • PhD (Mathematics), Stony Brook University, USA (2002)

  • BSc (Applied Mathematics), National Chiao Tung University, Taiwan (1997)


  • Professor, Department of Mathematics and Applied Mathematics, Xiamen University Malaysia (2016 to Present)

  • Professor, Faculty of Engineering, University of Nottingham Malaysia Campus (2015)

  • Associate Professor, Faculty of Engineering, University of Nottingham Malaysia Campus (2009 to 2015)

  • Senior Lecturer, Faculty of Information Technology, Multimedia University, Malaysia (2005 to 2009)

  • Assistant Professor, Department of Applied Mathematics, National Chiao Tung University, Taiwan (2002 to 2005)


  • Functional equations and special values of the Selberg zeta functions and theR uelle zeta functions for cofinite Fuchsian groups”, FRGS Grant, 2019-2021.

  • Universal Index Theorem on Universal Weil-Petersson Teichmuller Space and Local Index Theorem on Moduli Spaces of Riemann Surfaces of FiniteType”, XMUMRF, 2018-2023.

  • AsymptoticBehavior of Arithmetic Functions”, XMUMRF, 2021-2024.


  • L.P.Teo, “Resolvent trace formula and determinants of n Laplacianson orbifold Riemann surfaces”, SIGMA 17 (2021), 083, 40 pages.

  • L. P.Teo, “Ruelle zeta function for cofinite hyperbolic Riemann surfaces with ramification points”, Lett. Math. Phys. 110 (2020), 61-82.

  • J. Parkand L. P. Teo, “Liouville Action and Holography on Quasi-Fuchsian Deformation Spaces”, Comm. Math. Phys. 362(2018), 717-758.

  • L. P.Teo, “Alternating double Euler sums, hypergeometric identitiesand a theorem of Zagier”, J. Math. Analysis Appl. 462 (2018), 777-800.

  • J.Park, L. Takhtajan and L. P. Teo, “Potentials and Chern forms for Weil-Petersson and Takhtajan-Zograf metrics on moduli spaces”, Adv. Math. 305(2017), 856-894.

  • L. P.Teo, “Exact classical sphere-plate Casimir interaction in (D+1)-dimensional spacetime”, Phys. Rev. D. 89 (2014), 105033.

  • L. P.Teo, “Material dependence of Casimir interaction between asphere and a plate: First analytic correction beyond proximity forceapproximation”, Phys. Rev. D 88 (2013), 045019.

  • L. P.Teo, “Casimir effect between two spheres at small separations”, Phys. Rev. D 85 (2012), 045027.

  • L. P.Teo, M. Bordag and V. Nikolaev, “On the corrections beyondproximity force approximation (PFA)”, Phys. Rev. D. 84 (2011), 125037.

  • L.P.Teo, “Conformal Mappings and Dispersionless Toda hierarchy II:General String Equations”, Commun. Math. Phys. 297 (2010), 447-474.

  • L.P.Teo, “The Weil--Petersson geometry of the moduli space of Riemann surfaces”, Proc. Amer. Math. Soc. 137 (2009), 541-552.

  • L.P.Teo, “Universal index theorem on Mob(S1)\Diff+(S1)”, J.Geom. Phys 58 (2008),1540-1570.

  • S.C.Lim and L.P. Teo, “On the minima and convexity of Epstein zetafunction”, J. Math. Phys. 49 (2008), 073513.

  • A.Mcintyre and L.P. Teo, “Holomorphic factorization of determinants of Laplacians using quasi-Fuchsian uniformization”,Lett. Math.Phys. 83 (2008), 41-58.

  • L.P.Teo, “Bers isomorphism on the universal Teichmuller curve”,Math. Z. 256 (2007),no. 3, 603-613.

  • L.P.Teo, “Fay-like identities of the Toda lattice hierarchy and its dispersionless limit”, Rev. Math. Phys. 18 (2006), no. 10, 1055-1073.

  • L.A.Takhtajan and L.P. Teo, “Quantum Liouville theory in the background field formalism I. Compact Riemann surfaces”,Commun. Math. Phys. 268 (2006), 135-197.

  • T.Takebe, L.P. Teo and A. Zabrodin, “Lowner equations and dispersionless integrable hierarchies”, J. Phys. A. Math. Gen.39 (2006),11479-11501.

  • L.A.Takhtajan and L.P. Teo, “Weil-Petersson metric on the universal Teichmuller space”, Mem. Amer. Math. Soc., 183 (2006), no. 861, vi+119.

  • L.P.Teo, “A different expression of the Weil-Petersson potentialon the quasi-Fuchsian deformation space”, Lett. Math. Phys.73 (2005), 91-107.

  • L.P.Teo, “Velling-Kirillov metric on the universal Teichmuller curve”, Journal d’ Analyse Mathematique, 93 (2004), 271-308.

  • L.P.Teo, “Analytic functions and integrable hierarchies —characterization of tau functions”, Lett. Math. Phys. 64 (2003), 75-92.

  • L.A.Takhtajan and L.P. Teo, “Liouville action and Weil-Petersson geometry of deformation spaces, global Kleinian reciprocity and holography”, Commun. Math. Phys. 239 (2003), 183-240.

MAT Faculty CV

A Glance at XMUM